

# **Batch - 2008 [Engg]**

Time: 3 Hours Maximum Marks: 360

Please read the instructions carefully. You are allotted 5 minutes specifically for this purpose.

You are not allowed to leave the Examination Hall before the end of the test.

#### **INSTRUCTIONS**

#### A. General:

- 1. This booklet is your Question Paper containing 90 questions.
- 2. The Question Paper CODE is printed on the right hand top corner of this booklet. This should be entered on the OMR Sheet.
- 3. Fill the bubbles completely and properly using a **Blue/Black Ball Point Pen** only.
- 4. Blank papers, clipboards, log tables, slide rules, calculators, cellular phones, pagers, and electronic gadgets in any form are not allowed to be carried inside the examination hall.
- 5. The answer sheet, a machine-readable Optical mark recognition sheet (OMR Sheet), is provided separately.
- 6. DO NOT TAMPER WITH / MUTILATE THE OMR OR THE BOOKLET.
- 7. Do not break the seals of the question-paper booklet before being instructed to do so by the invigilator.

#### B. Question paper format & Marking Scheme:

- 8. The question paper consists of **3 parts** (Physics, Chemistry and Maths).
- 9. The test is of **3 hours** duration. Each question has 4 choices (A), (B), (C) and (D), out of which **ONLY ONE** is correct. Each question carries **+4 marks** for correct answer and **-1 mark** for wrong answer.

| Name of the Candidate (in Capitals) |                         |
|-------------------------------------|-------------------------|
| Test Centre                         | Centre Code             |
| Candidate's Signature               | Invigilator's Signature |



## **PHYSICS**

- Two identical spheres carrying charges  $-9\mu C$  and  $-5\mu C$  respectively are kept in contact and then 1. separated from each other. Point out true statement from the following. In each sphere
  - (a)  $1.25 \times 10^{13}$  electrons are in deficit
- (b)  $1.25 \times 10^{13}$  electrons are in excess
- (c)  $2.15 \times 10^{13}$  electrons are in excess
- (d)  $2.15 \times 10^{13}$  electrons are in deficit
- Two point charges placed at a certain distance r in air exert a force F on each other. Then the distance 2 r' at which these charges will exert the same force in a medium of dielectric constant k is given by
  - (a) r

(b) r/k

- (c)  $r/\sqrt{k}$
- Force between two identical charges placed at a distance r in vacuum is F. Now a slab of dielectric 3. constant 4 is inserted between these two charges. If the thickness of the slab is r/2, then the force between the charges will become
  - (a) F

- (b)  $\frac{3}{5}F$
- (c)  $\frac{4}{9}F$
- (d)  $\frac{F}{4}$
- 4. Charge Q is distributed to two different metallic spheres having radii R and 2R such that both spheres have equal surface charge density. Then charge on larger sphere is
  - (a)  $\frac{4Q}{5}$

- (b)  $\frac{Q}{5}$  (c)  $\frac{3Q}{5}$
- (d)  $\frac{5Q}{4}$
- 5. In figure, distance of the point from A, where the electric field is zero is
  - (a) 20 cm
  - (b) 10 cm
  - (c) 33 cm

20uC

- (d) none of these
- Suppose the charge of a proton and an electron differ slightly. One of them is -e, the other is  $(e + \Delta e)$ . If the net of electrostatic force and gravitational force between two hydrogen atoms placed at a distance d (much greater than atomic size) apart is zero, then  $\Delta e$  is of the order of [Given mass of hydrogen  $m_h = 1.67 \times 10^{-27} \text{ kg}$ 
  - (a)  $10^{-20}$  C
- (b)  $10^{-23}$  C
- (c)  $10^{-37}$  C
- (d)  $10^{-47}$  C

- The dimensional formula of electric potential is 7.
  - (a)  $[MLT^{-2}A^{-1}]$
- (b)  $[ML^2T^{-2}A^{-1}]$
- (c)  $[ML^2 T^{-3} A^{-1}]$  (d)  $[ML^2 T^{-3} A^{-2}]$
- A train is moving with a velocity of 30 km h<sup>-1</sup> due east and a car is moving with a velocity of 40 km h<sup>-1</sup>. 8. What is the speed and direction of (a) 50 km h<sup>-1</sup>,  $\tan^{-1}(3/4)$  West of North (b) 40 km h<sup>-1</sup>,  $\tan^{-1}(4/3)$  west of North (d) 50 km h<sup>-1</sup>,  $\tan^{-1}(3/4)$  East of North
- (b)  $40 \text{ km h}^{-1}$ ,  $\tan^{-1} (4/3)$  West of North

- 9. Two bullets are fired horizontally from the same height with different velocities. Which bullet will reach the ground first?
  - (a) faster one

(b) slower one

(c) both simultaneously

(d) can not be predicted



| 10. | A fighter plane flying horizontally at an altitude of 1.5 km with speed of 720 km h <sup>-1</sup> passes directly overhead an anticraft gun. At what angle from the vertical should the shell be fired from the gun with muzzle speed 400 ms <sup>-1</sup> to hit the plane in shortest time? |                                                  |                                                                 |                                                                         |  |  |  |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|-----------------------------------------------------------------|-------------------------------------------------------------------------|--|--|--|
|     | (a) 90°                                                                                                                                                                                                                                                                                       | (b) 60°                                          | (c) 45°                                                         | (d) 30°                                                                 |  |  |  |
| 11. |                                                                                                                                                                                                                                                                                               | v a ball to a maximum<br>ter throw the same ball |                                                                 | 0 m. How much high above the                                            |  |  |  |
|     | (a) 50 m                                                                                                                                                                                                                                                                                      | (b) 70 m                                         | (c) 100 m                                                       | (d) 120 m                                                               |  |  |  |
| 12. | A body is projected w<br>value of range is                                                                                                                                                                                                                                                    | with velocity u so that is                       | ts horizontal range is twice                                    | the greatest height attained. The                                       |  |  |  |
|     | (a) $\frac{3u^3}{2g}$                                                                                                                                                                                                                                                                         | (b) $\frac{2u^2}{5g}$                            | (c) $\frac{4u^2}{5g}$                                           | $(d) \frac{5u^2}{3g}$                                                   |  |  |  |
| 13. | 1 5 , 1 5                                                                                                                                                                                                                                                                                     |                                                  | making an angle $\theta$ with height attained. Then its ra      | h the horizontal, its range on a ange is:                               |  |  |  |
|     | (g is the acceleration of                                                                                                                                                                                                                                                                     | due to gravity)                                  |                                                                 |                                                                         |  |  |  |
|     | (a) $\frac{24u^2}{35g}$                                                                                                                                                                                                                                                                       | (b) $\frac{48u^2}{73g}$                          | (c) $\frac{44u^2}{65g}$                                         | (d) $\frac{48u^2}{78g}$                                                 |  |  |  |
| 14. | The point from wher components of its disp                                                                                                                                                                                                                                                    | e a ball is projected is placement are given by  | s taken as the origin of the $x = 6t$ and $y = 8t - 5t^2$ . Wh  | be co-ordinate axes. The $x$ and $y$ hat is the velocity of projection? |  |  |  |
|     | (a) $6 \text{ ms}^{-1}$                                                                                                                                                                                                                                                                       | (b) 8 ms <sup>-1</sup>                           | (c) $10 \text{ ms}^{-1}$                                        | (d) $14 \text{ ms}^{-1}$                                                |  |  |  |
| 15. | -                                                                                                                                                                                                                                                                                             |                                                  |                                                                 | on the ground at a distance of 90 0°, it will fall on the ground at a   |  |  |  |
|     | (a) 120 m                                                                                                                                                                                                                                                                                     | (b) 90 m                                         | (c) 60 m                                                        | (d) 30 m                                                                |  |  |  |
| 16. | A stone is thrown at time of flight of this s                                                                                                                                                                                                                                                 |                                                  | izontal with speed u. It rea                                    | aches a maximum height H. The                                           |  |  |  |
|     | (a) $\sqrt{\frac{H}{g}}$                                                                                                                                                                                                                                                                      | (b) $\sqrt{\frac{2H}{g}}$                        | (c) $2\sqrt{\frac{2H}{g}}$                                      | $(d) \ 2\sqrt{\frac{2H\sin\theta}{g}}$                                  |  |  |  |
| 17. | A projectile is projective covering a horizontal                                                                                                                                                                                                                                              |                                                  | gy K. Its range is 60 m.                                        | It will have minimum KE, after                                          |  |  |  |
|     | (a) 60 mm                                                                                                                                                                                                                                                                                     | (b) 30 m                                         | (c) 45 m                                                        | (d) 15 m                                                                |  |  |  |
| 18. | ±                                                                                                                                                                                                                                                                                             | -                                                | an angle $\theta$ with the vertical ctively. The maximum height | cal. It just crosses the top of two ght of projectile is                |  |  |  |
|     | (a) 9.8 m                                                                                                                                                                                                                                                                                     |                                                  |                                                                 | up P                                                                    |  |  |  |
|     | (b) 19.6 m                                                                                                                                                                                                                                                                                    |                                                  | 9                                                               |                                                                         |  |  |  |
|     | (c) 39.2 m                                                                                                                                                                                                                                                                                    |                                                  | Ž                                                               | h h                                                                     |  |  |  |
|     | (d) 4.9 m                                                                                                                                                                                                                                                                                     |                                                  | <u></u>                                                         |                                                                         |  |  |  |



- A particle is projected from a horizontal plane with a velocity of  $8\sqrt{2}$  ms<sup>-1</sup> at an angle. At highest point its velocity is found to be 8 ms<sup>-1</sup>. Its range will be  $(g = 10 \text{ ms}^{-2})$ 
  - (a) 3.2 m

- (d) 12.8 m
- A projectile is thrown in the upward direction making an angle of 60° with the horizontal direction with 20. a velocity of 147 ms<sup>-1</sup>. Then the time after which its inclination with the horizontal is 45°, is

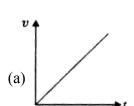
- (b) 10.98 s
- (c) 5.49 s
- 21. If H and R are the maximum height attained by a projectile and the horizontal range respectively, then the angle of projection at the origin is

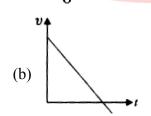
  - (a)  $\tan^{-1}\left(\frac{2H}{R}\right)$  (b)  $\tan^{-1}\left(\frac{4H}{R}\right)$  (c)  $\tan^{-1}\left(\frac{H}{R}\right)$  (d)  $\tan^{-1}\left(\frac{3H}{2R}\right)$
- 22. A projectile can have the same range 'R' for two angles of projection. If  $t_1$  and  $t_2$  be the limes of flights in the two cases, then the product of the two time of flights is proportional to
  - (a) R

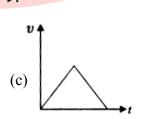
(b)  $\frac{1}{p}$ 

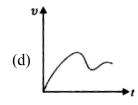
(c)  $\frac{1}{n^2}$ 

- $(d) R^2$
- If a particle is thrown vertically upwards then its velocity so that it covers same distance in 5th and 6th 23. seconds would be
  - (a) 48 m/s
- (b) 14 m/s
- (c) 49 m/s
- (d) 7 m/s
- A stone is thrown vertically upward with an initial velocity u from the top of a tower, reaches the 24. ground with a velocity 3 u. The height of the tower is
  - (a)  $\frac{3u^2}{g}$


(b)  $\frac{4u^2}{g}$ 


- (c)  $\frac{6u^2}{a}$
- (d)  $\frac{9u^2}{a}$
- A balloon is rising vertically up with a velocity of 29 ms<sup>-1</sup>. A stone is dropped from it and it reaches 25. ground in 10 seconds. The height of the balloon when the stone was dropped from it is  $(g = 9.8 \text{ ms}^{-2}).$ 
  - (a) 400 m
- (b) 150 m
- (c) 100 m
- (d) 200 m
- A particle is released from rest from a tower of height 3 h. The ratio of the intervals of time to cover 26. three equal heights h is
  - (a)  $t_1:t_2:t_3=3:2:1$


(b)  $t_1:t_2:t_3=1:(\sqrt{2}-1):(\sqrt{3}-2)$ 


(c)  $t_1:t_2:t_3=1:\sqrt{2}:\sqrt{3}$ 

- (d)  $t_1:t_2:t_3=1:(\sqrt{2}-1):(\sqrt{3}-\sqrt{2})$
- 27. The displacement-time of a particle is shown in figure. The corresponding velocity-time graph is











- The distance-time graph of a particle at time t makes angle 45° with the time axis. After two seconds, it makes an angle 60° with the time axis. What is the average acceleration of the particle?
  - (a) 1/2

- (b)  $\sqrt{3}/2$
- (c)  $(\sqrt{3}-1)/2$
- (d)  $(\sqrt{3}+1)/2$
- A particle has an initial velocity  $3\hat{i} + 4\hat{j}$  and an acceleration of  $0.4\hat{i} + 0.3\hat{j}$ . Its speed after 10 s is 29.
  - (a) 10 unit
- (b)  $7\sqrt{2}$  unit
- (c) 7 unit
- (d) 8.5 unit
- The acceleration experienced by a moving boat after its engine is cut-off, is given by :  $a = -kv^3$ , where k 30. is a constant. If  $v_0$  is the magnitude of velocity at cut-off, then the magnitude of the velocity at time tafter the cut-off is
  - (a)  $\frac{v_0}{2ktv_0^2}$
- (b)  $\frac{v_0}{1+2k\,t\,v_0^2}$
- (c)  $\frac{v_0}{\sqrt{1 2ktv_0^2}}$  (d)  $\frac{v_0}{\sqrt{1 + 2ktv_0^2}}$



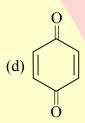


## **CHEMISTRY**

#### 31. Which is the most stable carbocation?

- (a)  $\left(CH_3\right)_3 \overset{\oplus}{C}$
- (b) ( )
- (c)  $\left\langle \begin{array}{c} \\ \\ \end{array} \right\rangle \stackrel{\oplus}{\text{CH}}_2$ 
  - $\overset{\oplus}{\text{CH}}_2$  (d)  $\left(\text{CH}_3\right)_2\overset{\oplus}{\text{CH}}$

#### 32. Which comparison is not correct as indicated?


- (a)  $\sim$  OH > CH<sub>3</sub>OH (acidic nature)
- (b)  $\sim$  NH<sub>2</sub> > CH<sub>3</sub>NH<sub>2</sub> (basic nature)
- (d)  $COH > CH_3COH$  (acidic nature)

#### 33. Which is maximum acidic?









## 34. Increasing order of $pK_a$ values $(pK_a = -\log K_a)$ of $H_2O$ , $CH_3OH$ and $C_6H_5OH$ is

(a)  $H_2O < CH_3OH < C_6H_5OH$ 

(b)  $CH_3OH < H_2O < C_6H_5OH$ 

(c)  $C_6H_5OH < H_2O < CH_3OH$ 

(d)  $C_6H_5OH < CH_3OH < H_2O$ 

#### 35. Select the incorrect statement.

- (a) Electron-withdrawing inductive effect of the carbonyl group in —COOH group weakens the O—H bond and favours ionisation of a carboxylic acid compared with an alcohol
- (b) Inductive effect of the chlorine destabilises the acid and stabilizes the conjugate base
- (c) Aniline is a weaker base than ammonia
- (d) Phenol is a weaker acid than water

#### 36. Inductive effect involves:

(a) Delocalisation of  $\sigma$ -electrons

(b) Partial displacement of σ-electrons

(c) Delocalisation of  $\pi$ -electrons

(d) Displacement of lone pair electrons

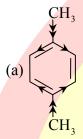
#### 37. Select correct statement about I effect?

- (a) I effect transfers electrons from one carbon atom to another
- (b) I effect is the polarisation of  $\sigma$  bond electrons
- (c) I effect creates net charge in the molecule
- (d) I effect is distance independent
- 38. Which of the following group shows +I-effect:
  - (a) –Br

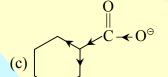
- (b) -COOH
- (c) –OR

(d) -COO




- 39. Which of the following alkyl groups has the maximum +I effect?
  - (a)  $(CH_3)$ , CH-
- (b)  $(CH_3)_2 C -$
- (c) CH<sub>3</sub>CH<sub>2</sub> -
- (d) CH<sub>3</sub>

- Decreasing –I effect of given groups is: 40.
  - (i) CN


- (ii) NO<sub>2</sub>
- (iii) NH,
- (iv) F

- (a) iii > ii > i > iv
- (b) ii > iii > iv > i (c) iii > ii > iv > i
- (d) ii > i > iv > iii

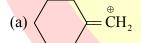
- Which of the following is the strongest –I group: 41
  - (a)  $-NF_3$
- (b)  $-NH_2$
- (c)  $-\overset{+}{S}(CH_3)_2$
- (d) -F
- In which of the following species, incorrect direction of inductive effect is shown? 42.



(b)






- Maximum hyperconjugation is observed in 43.
  - $-CH = CH_2$

 $CH = CH_2$ 

(c)  $(CH_3)$ , C - CH = CH,

- Following carbocation changes to more stable carbocation 44.











- In the following, electrophile is  $HO NO_2$ 45.
  - (a) H<sup>⊕</sup>

- (b) NO₂<sup>⊕</sup>
- (c)  $NO_2^{\oplus}$
- (d) OH<sup>⊕</sup>
- The observed dipole moment of HCl molecule is 1.03 D. If H–Cl bond distance is 1.275 Å and electronic charge is  $4.8 \times 10^{-10}$  e.s.u. The % polarity in HCl will be 46.
  - (a)  $1.275 \times 1.03 \%$

(b)  $\frac{4.8 \times 1.275 \times 10^{-8}}{1.03}$  %

(c)  $\frac{1.03 \times 100}{4.8 \times 1.275}$ %

(d)  $\frac{4.8 \times 10^{-10}}{1.03} \times 100\%$ 

| 47. | Which of the following h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | as same bond order as NC                                           | <sup>+</sup> has?                   |                                                    |  |  |  |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|-------------------------------------|----------------------------------------------------|--|--|--|
|     | (a) CN <sup>-</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (b) $O_2^-$                                                        | (c) CN <sup>+</sup>                 | (d) none of them                                   |  |  |  |
| 48. | Among KO <sub>2</sub> , AlO <sub>2</sub> <sup>-</sup> , BaO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | and NO <sub>2</sub> <sup>+</sup> , unpaired electron is present in |                                     |                                                    |  |  |  |
|     | (a) NO <sub>2</sub> <sup>+</sup> , BaO <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (b) KO <sub>2</sub> and AlO <sub>2</sub>                           | (c) KO <sub>2</sub> only            | (d) BaO <sub>2</sub> only                          |  |  |  |
| 49. | Which of the following is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | s planar?                                                          |                                     |                                                    |  |  |  |
|     | (a) XeO <sub>4</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (b) XeO <sub>2</sub> F <sub>2</sub>                                | (c) XeO <sub>3</sub> F <sub>2</sub> | (d) XeF <sub>4</sub>                               |  |  |  |
| 50. | Which of the following d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | loes not contain coordinate                                        | e bond?                             |                                                    |  |  |  |
|     | (a) BH <sub>4</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (b) NH <sub>4</sub> <sup>+</sup>                                   | (c) $CO_3^{2-}$                     | (d) H <sub>3</sub> O <sup>+</sup>                  |  |  |  |
| 51. | The correct order in which                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ch the O-O bond length in                                          | creases in the following is         |                                                    |  |  |  |
|     | (a) $CN$ (b) $O_2^-$ (c) $CN^+$ (d) none of them Among $KO_2$ , $AIO_2^-$ , $BaO_2$ and $NO_2^+$ , unpaired electron is present in (a) $NO_2^+$ , $BaO_2$ (b) $KO_2$ and $AIO_2^-$ (e) $KO_2$ only (d) $BaO_2$ only Which of the following is planar?  (a) $XeO_4$ (b) $XeO_2F_2$ (c) $XeO_3F_2$ (d) $XeF_4$ Which of the following does not contain coordinate bond?  (a) $BH_4^-$ (b) $NH_4^+$ (c) $CO_3^{2-}$ (d) $H_3O^+$ The correct order in which the O-O bond length increases in the following is (a) $O_2 < O_3 < H_2O_2$ (b) $H_2O_2 < O_3 < O_2$ (c) $O_3 < O_2 < H_2O_2$ (d) $O_2 < H_2O_2 < O_3$ Which species has the maximum number of lone pair of electrons on the central atom?  (a) $CIO_3^-$ (b) $XeF_4$ (c) $SF_4$ (d) $I_3^-$ Molecular orbital electronic configuration for $X_2^{n-}$ anion is $KK^*(\sigma 2s)^2(\mathring{\sigma} 2s)^2(\pi 2p_x)^2(\pi 2p_y)^2(\sigma 2p_x)^2(\mathring{\pi} 2p_x)^4$ The anion $X_2^{n-}$ is  (a) $N_2^-$ (b) $O_2^-$ (c) $N_2^{2-}$ (d) $O_2^{2-}$ Among the following compounds, the one that is polar and has the central atom with $sp^2$ hybridization is  (a) $H_2CO_3$ (b) $H_2CO_3$ (c) $H_2CO_3$ (d) $H_2CO_3$ (e) $H_2CO_3$ (f) $H_$ |                                                                    |                                     |                                                    |  |  |  |
| 52. | Which species has the ma                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | aximum number of lone pa                                           | nir of electrons on the cent        | tral atom?                                         |  |  |  |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                    | (d) $I_3^-$                         |                                                    |  |  |  |
| 53. | Molecular orbital electro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\frac{1}{n}$ configuration for $X_2^{n-1}$                        | anion is                            |                                                    |  |  |  |
|     | $KK^*(\sigma 2s)^2(\overset{*}{\sigma} 2s)^2(\pi 2p_x$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $(\pi 2p_y)^2 (\sigma 2p_z)^2 (\pi^2 2p_z)^2$                      | )1                                  |                                                    |  |  |  |
|     | The anion $X_2^{n-}$ is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                    |                                     |                                                    |  |  |  |
|     | (a) $N_2^-$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (b) O <sub>2</sub>                                                 | (c) $N_2^{2-}$                      | (d) $O_2^{2-}$                                     |  |  |  |
| 54. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | mpounds, the one that is p                                         | polar and has the central a         | atom with sp <sup>2</sup> hybridization            |  |  |  |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (b) SiF <sub>4</sub>                                               | (c) BF <sub>3</sub>                 | (d) HClO <sub>2</sub>                              |  |  |  |
| 55. | Which among the follow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ing species is most stable?                                        |                                     |                                                    |  |  |  |
|     | (a) He <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (b) He <sub>2</sub> <sup>+</sup>                                   | (c) He <sub>2</sub> <sup>2+</sup>   | (d) H <sub>2</sub>                                 |  |  |  |
| 56. | A 6.90 M solution of KC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | OH in water has 30% of KC                                          | OH by weight. The density           | of solution is                                     |  |  |  |
|     | (a) 3.88 g/ml                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (b) 13.88 g/ml                                                     | (c) 1.4 g/ml                        | (d) 1.288 g/ml                                     |  |  |  |
| 57. | 28 g N <sub>2</sub> and 6 g H <sub>2</sub> were equilibrium are respective                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | =                                                                  | 17 g NH <sub>3</sub> was formed. T  | the weight of N <sub>2</sub> and H <sub>2</sub> at |  |  |  |
|     | (a) 11 g, 0 g                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (b) 1 g, 3 g                                                       | (c) 11 g, 3 g                       | (d) 14 g, 3 g                                      |  |  |  |



| 58. | 8.7 gm of pure MnO <sub>2</sub> is heated with an excess of HCl and the gas evolved is passed into a solution of |
|-----|------------------------------------------------------------------------------------------------------------------|
|     | KI. The amount of I <sub>2</sub> liberated is                                                                    |

- (a) 0.2 mole
- (b) 25.4 gm
- (c) 15.4 gm
- (d) 7.7 gm
- 59. A one litre solution of 0.1 M of a metal chloride MCl<sub>x</sub> requires 500 mL of 0.6 M AgNO<sub>3</sub> solution for complete precipitation. The value of x is
  - (a) 1

(b) 2

(c) 4

- (d) 3
- 60. Hydrochloric acid solutions A and B have concentrations 0.5 N and 0.1 N respectively. The volumes of solution A and solution B required making a 2 litre solution of 0.2 N HCl are
  - (a) 0.5 L of A and 1.5 L of B

(b) 1.5 L of A and 0.5 L of B

(c) 1.0 L of A and 1.0 L of B

(d) 0.75 L of A and 1.25 L of B





## **MATHS**

61. If 
$$f(x) = 4x^3 + 3x^2 + 3x + 4$$
, then  $x^3 f(\frac{1}{x})$  is

- (a) f(-x)
- (b)  $\frac{1}{f(x)}$
- (c)  $\left| f\left(\frac{1}{r}\right) \right|^2$
- (d) f(x)

62. The domain of 
$$f(x) = \sqrt{\log \frac{1}{|\sin x|}}$$
 is

- (a)  $R \{2n\pi, n \in I\}$  (b)  $R \{n\pi, n \in I\}$  (c)  $R \{-\pi, \pi\}$

63. The domain of 
$$f(x) = \frac{\sqrt{-\log_{0.3}(x-1)}}{\sqrt{x^2 + 2x + 8}}$$
 is

- (a) (1, 4)
- (b) (-2, 4)
- (c) (2, 4)
- (d)  $[2, \infty)$

64. Let 
$$f:(-1,1) \to IR$$
 be such that  $f(\cos 4\theta) = \frac{2}{2-\sec^2 \theta}$  for  $\theta \in \left(0, \frac{\pi}{4}\right) \cup \left(\frac{\pi}{4}, \frac{\pi}{2}\right)$ , then the value(s) of  $f\left(\frac{1}{3}\right)$  is (are)

- (a)  $2+\sqrt{\frac{3}{2}}$  (b)  $1+\sqrt{\frac{3}{2}}$
- (c)  $1-\sqrt{\frac{2}{3}}$
- (d)  $1+\sqrt{\frac{2}{3}}$

65. The range of 
$$f(x) = \frac{x^2 + x + 2}{x^2 + x + 1}$$
,  $x \in R$  is

- (a)  $(1, \infty)$
- (b)  $\left(1, \frac{11}{7}\right)$
- (c)  $\left(1, \frac{7}{3}\right)$
- (d)  $\left(1, \frac{7}{5}\right)$

- The range of  $f(x) = 4^x + 2^x + 1$  is
  - (a)  $(0, \infty)$
- (b)  $(1, \infty)$
- (c)  $(2, \infty)$
- (d)  $(3, \infty)$

67. If 
$$f(x) = \frac{x}{\sqrt{1+x^2}}$$
, then  $(fofof)(x)$  is equal to

- (a)  $\frac{3x}{\sqrt{1+3x^2}}$  (b)  $\frac{x}{\sqrt{1+3x^2}}$
- (c)  $\frac{3x}{1-x^2}$
- (d) None of these

68. The range of function 
$$f(x) = x^2 + \frac{1}{x^2 + 1}$$
 is

- (a)  $[1, \infty)$
- (b)  $[2, \infty)$
- (c)  $\left| \frac{3}{2}, \infty \right|$
- (d) None of these

69. The domain of 
$$f(x) = \frac{1}{\sqrt{[x]^2 - [x] - 6}}$$
 is

- (a)  $(-\infty, -2) \cup [4, \infty)$  (b)  $(-\infty, -2] \cup [4, \infty)$  (c)  $(-\infty, -2) \cup (4, \infty)$  (d) None of these



| 70. | Let the function | $f: R \to R$ | be defined by | f(x) | $= 2x + \sin x$ . | Then, $f$ is |
|-----|------------------|--------------|---------------|------|-------------------|--------------|
|-----|------------------|--------------|---------------|------|-------------------|--------------|

- (a) one-one and onto
- (b) one-one and into
- (c) many-one and onto
- (d) many-one and into

71. The function 
$$f:(-\infty, -1] \rightarrow (0, e^5]$$
 defined by  $f(x) = e^{x^3 - 3x + 2}$  is

- (a) one-one and onto
- (b) one-one and into
- (c) many one and into
- (d) many one and onto

72. If 
$$f: R \to R$$
 satisfies  $f(x+y) = f(x) + f(y)$ , for all  $x, y \in R$  and  $f(1) = 7$ , then  $\sum_{r=1}^{n} f(r)$  is

- (a)  $\frac{7n}{2}$
- (b)  $\frac{7(n+1)}{2}$
- (c) 7n(n+1)
- (d)  $\frac{7n(n+1)}{2}$

73. If 
$$y = f(x)$$
 satisfy the condition  $f\left(x + \frac{1}{x}\right) = x^2 + \frac{1}{x^2}(x \neq 0)$ , then  $f(x)$  is

- (a)  $-x^2 + 2$

- (b)  $-x^2-2$  (c)  $x^2-2, x \in R-\{0\}$  (d)  $x^2-2, |x| \in [2, \infty)$

74. The domain of 
$$f(x) = \sqrt{x - x^2} + \sqrt{4 + x} + \sqrt{4 - x}$$
 is

- (a)  $[-4, \infty)$
- (b) [-4, 4]
- (c) [0, 4]
- (d) [0, 1]

75. The range of 
$$f(x) = \log_e \sqrt{4 - x^2}$$
 is

- (a)  $(0, \infty)$
- (b)  $(-\infty, \infty)$
- (c)  $\left(-\infty, \log_e 2\right]$  (d)  $\left(\log_e 2, \infty\right)$

76. Let 
$$f(x) = \frac{x^2 - 4}{x^2 + 4}$$
 for  $|x| > 2$ , then the function  $f: (-\infty, -2] \cup [2, \infty) \to (-1, 1)$  is

- (a) one-one into
- (b) one-one onto
- (c) many-one into
- (d) many-one onto

77. If 
$$x = 111...1$$
 (20 digits),  $y = 333...3$  (10 digits) and  $z = 222...2$  (10 digits), then  $\frac{x - y^2}{z}$  equals

(a)  $\frac{1}{2}$ 

(b) 1

(c) 2

(d) 4

$$\frac{\left(a^{8}+4 a^{4}+1\right) \left(b^{4}+3 b^{2}+1\right) \left(c^{2}+2 c+2\right)}{a^{4} b^{2}} \text{ equals}$$

(a) 12

(b) 24

(c) 30

(d) 60

79. If the sum of m consecutive odd integers is 
$$m^4$$
, then the first integer is

- (a)  $m^3 + m + 1$
- (b)  $m^3 + m 1$
- (c)  $m^3 m 1$
- (d)  $m^3 m + 1$

80. If 
$$2\lambda$$
,  $\lambda$  and  $[\lambda^2 - 14]$ ,  $\lambda \in R - \{0\}$  and  $[\cdot]$  denotes the greatest integer function are the first three terms of a GP in order, then the 51th term of the sequence, 1,  $3\lambda$ ,  $6\lambda$ ,  $10\lambda$ , ... is

- (a) 5104
- (b) 5304
- (c) 5504

(d) 5704



| 81. | Let $a_1, a_2,, a_{10}$ be in AP and $h_1, h_2,, h_{10}$ be in HP. If $a_1 = h_1 = 2$ and $a_{10} = h_{10} = 3$ , then $a_4h_7$ is |                        |                                                |                                               |                                      |                    |                                  | then $a_4h_7$ is |
|-----|------------------------------------------------------------------------------------------------------------------------------------|------------------------|------------------------------------------------|-----------------------------------------------|--------------------------------------|--------------------|----------------------------------|------------------|
|     | (a) 2 (b                                                                                                                           | ) 3                    |                                                | (c)                                           | ) 5                                  |                    | (d) 6                            |                  |
| 82. | If $a(b-c)x^2 + b(c-a)xy +$                                                                                                        | -c(a-b)                | $y^2$ is a p                                   | erfect sq                                     | uare, the                            | e quantitie        | es $a, b, c$ are in              |                  |
|     | (a) AP (b                                                                                                                          | ) GP                   |                                                | (c)                                           | ) HP                                 |                    | (d) None                         | of these         |
| 83. | If 11 AM's are inserted between                                                                                                    | veen 28 an             | nd 10, th                                      | e numbe                                       | r of inte                            | gral AM's          | is                               |                  |
|     |                                                                                                                                    | 6)                     |                                                | ` '                                           | 7                                    |                    | (d) 8                            |                  |
| 84. | The minimum value of the                                                                                                           | quantity (             | $a^2 + 3a$                                     | $+1)(b^2+a^2)$                                | $\frac{3b+1}{bc}$                    | $c^2 + 3c + 1$     | $\frac{1}{2}$ , where $a, b, c$  | $\in R^+$ , is   |
|     | (a) $\frac{11^3}{2^3}$ (b)                                                                                                         | ) 125                  |                                                | (c)                                           | ) 25                                 |                    | (d) 27                           |                  |
| 85. | If $a, b, c$ are in AP and $ a $ ,                                                                                                 | b ,  c  < 1            | and                                            |                                               |                                      |                    |                                  |                  |
|     | x                                                                                                                                  | =1+a+a                 | $u^2 + + 0$                                    | $\infty$                                      |                                      |                    |                                  |                  |
|     | y                                                                                                                                  | b = 1 + b + b          | $\frac{1}{10000000000000000000000000000000000$ | x x                                           |                                      |                    |                                  |                  |
|     | z                                                                                                                                  | =1+c+c                 | <sup>2</sup> + + c                             | o                                             |                                      |                    |                                  |                  |
|     | $z = 1 + c + c^2 + \dots + \infty$ Then, x, y, z will be in                                                                        |                        |                                                |                                               |                                      |                    |                                  |                  |
|     | (a) AP (b                                                                                                                          | ) GP                   |                                                | (c)                                           | ) HP                                 |                    | (d) None                         | of these         |
| 86. | Let $a_1$ , $a_2$ , $a_3$ , be terms a                                                                                             | are in AP,             | if $\frac{a_1 + a_2}{a_1 + a_2}$               | $\frac{a_2 + \dots + a_2}{a_2 + \dots + a_2}$ | $\frac{l_p}{l_q} = \frac{p^2}{q^2},$ | $p \neq q$ , th    | then $\frac{a_6}{a_{21}}$ equals |                  |
|     | (a) $\frac{41}{11}$ (b)                                                                                                            | $(7) \frac{7}{2}$      |                                                | (c)                                           | $\frac{2}{7}$                        |                    | (d) $\frac{11}{41}$              |                  |
| 87. | If 100 times the 100th term term, then the 150th term of                                                                           |                        |                                                | non-zero                                      | commo                                | n differei         | nce equals the 5                 | 0 times its 50t  |
|     | (a) 150 times its 50th term                                                                                                        |                        |                                                | (b                                            | 150                                  |                    |                                  |                  |
|     | (c) zero                                                                                                                           |                        |                                                | •                                             | ) –150                               |                    |                                  |                  |
| 88. | For any three positive real r                                                                                                      | numbers <mark>a</mark> | a, $b$ and                                     | c, 9(25a)                                     | $a^2+b^2$                            | $+25(c^2-3)$       | (3ac) = 15b(3a + 6)              | c). Then         |
|     | (a) $a, b$ and $c$ are in GP                                                                                                       |                        |                                                | (b                                            | ) b, c ar                            | nd <i>a</i> are in | GP .                             |                  |
|     | (c) $b$ , $c$ and $a$ are in AP                                                                                                    |                        |                                                | (d                                            | a, b ar                              | d c are in         | AP                               |                  |
| 89. | $\sum_{r=0}^{10} \frac{r}{1-2r^2-4} =$                                                                                             |                        |                                                |                                               |                                      |                    |                                  |                  |

$$\sum_{r=1}^{89} \frac{1 - 3r^2 + r^4}{1 - 3r^2 + r^4}$$

(a)  $-\frac{50}{109}$ 

(b)  $-\frac{54}{109}$ 

(c)  $-\frac{55}{111}$ 

(d)  $-\frac{55}{109}$ 

90. The sum of the series  $1 + \frac{4}{5} + \frac{7}{5^2} + \frac{10}{5^3} + \dots$  to infinite terms, is:

(a)  $\frac{31}{12}$ 

(b)  $\frac{41}{16}$ 

(c)  $\frac{45}{16}$ 

(d)  $\frac{35}{16}$ 



## **ANSWER KEY**

| PHYSICS |    |    |    |                 |                 |    |    |    |    |
|---------|----|----|----|-----------------|-----------------|----|----|----|----|
| 1       | 2  | 3  | 4  | 5               | 6               | 7  | 8  | 9  | 10 |
| В       | С  | С  | A  | С               | С               | С  | Α  | С  | D  |
| 11      | 12 | 13 | 14 | 15              | 16              | 17 | 18 | 19 | 20 |
| Α       | С  | В  | C  | В               | С               | В  | В  | D  | С  |
| 21      | 22 | 23 | 24 | 25              | 26              | 27 | 28 | 29 | 30 |
| В       | A  | C  | В  | D               | D               | В  | C  | В  | D  |
|         |    |    |    | CHEM            | IISTRY          |    |    |    |    |
| 31      | 32 | 33 | 34 | 35              | 36              | 37 | 38 | 39 | 40 |
| A       | В  | Α  | С  | D               | В               | В  | D  | В  | D  |
| 41      | 42 | 43 | 44 | 45              | 46              | 47 | 48 | 49 | 50 |
| Α       | D  | D  | В  | C               | С               | Α  | С  | D  | С  |
| 51      | 52 | 53 | 54 | 55              | 56              | 57 | 58 | 59 | 60 |
| Α       | D  | Α  | A  | D               | D               | D  | В  | D  | Α  |
|         |    |    |    | MA              | THS             |    |    |    |    |
| 61      | 62 | 63 | 64 | 65              | 66              | 67 | 68 | 69 | 70 |
| D       | В  | D  | В  | С               | В               | В  | Α  | Α  | Α  |
| 71      | 72 | 73 | 74 | <mark>75</mark> | <mark>76</mark> | 77 | 78 | 79 | 80 |
| В       | D  | D  | D  | С               | С               | В  | С  | D  | В  |
| 81      | 82 | 83 | 84 | 85              | <mark>86</mark> | 87 | 88 | 89 | 90 |
| D       | С  | Α  | В  | С               | D               | С  | С  | D  | D  |